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High Figure-of-Merit Lamb Wave Resonators
Based on Al0.7Sc0.3N Thin Film

Shuai Shao , Zhifang Luo , Student Member, IEEE, and Tao Wu , Member, IEEE

Abstract— This work reports the Lamb wave resonator
based on Al0.7Sc0.3N thin films using magnetron sputtering
with a single alloy target. The resonator fabrication process
based on high Sc doping concentration is discussed.
Al0.7Sc0.3N thin films with a 1.2◦ (0002) rocking curve were
obtained with improved crystalline quality and reduced
abnormal orientation grains (AOGs). The etching process
has been optimized to achieve an etch rate of 127 nm/min
and a profile angle of 72◦. The dispersion properties of Lamb
waves and the influence of different electrode metals on the
coupling coefficient in Al0.7Sc0.3N thin films were simulated.
Al0.7Sc0.3N Lamb wave resonators operating at approxi-
mately 300 MHz and 600 MHz were fabricated. A high electro-
mechanical coupling coefficient (k2

t ) of 7.74% is reported,
with the loaded quality factor of 1119, respectively. A high
Figure-of-Merit (FOM) of 86.6 has been achieved for AlScN
film based Lamb wave resonators below 1 GHz. The appli-
cation potential of high scandium concentration (>25%) in
resonators and filters is demonstrated.

Index Terms— Aluminum scandium nitride, Al0.7Sc0.3N,
lamb wave resonator, piezoelectric, high k2

t · Q product.

I. INTRODUCTION

THE emerging 5G application requires high-performance
filters with wide bandwidth and low insertion loss

for wireless communication devices. High electromechanical
coupling coefficients (k2

t ) and quality factors (Q) are the
main specifications for resonators. Surface acoustic wave res-
onators (SAW) based on single crystal piezoelectric material
and thin film bulk acoustic wave resonators (FBAR) based on
AlN are successfully applied in RF front-end due to their great
performance [1], [2]. However, SAW cannot be integrated with
CMOS process and FBAR is difficult to integrate multibands
monolithically. Therefore, Lamb wave resonators (LWR) based
on aluminum nitride (AlN) with the ability to lithographically
define operating frequencies have been a hot topic in the
past decade [3]. Many works have been performed in the
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Fig. 1. (a) Illustrations of the lamb wave resonator with floating bottom
electrode. (b) Finite Element Analysis (FEA) simulation of the S0 mode
lamb wave resonator. (1) electric potential, (2) total displacement.

direction of Q enhancement, energy confinement and higher
order modes [4]. Compared with other piezoelectric materials,
the low piezoelectric constant of AlN limits the maximum
k2

t to approximately 6% [5]. Currently, Sc-doped aluminum
nitride (AlScN) serves as one of the most promising candidates
for improving the coupling coefficient of resonators [6], [7].

A few studies have demonstrated the performance enhance-
ment of AlScN thin film based SAW, FBAR, laterally coupled
alternating thickness (LCAT) resonator [8], [9] and LWR res-
onators [9]–[22]. Due to the overall improvement of piezoelec-
tric coefficients by Sc doping, the electromechanical coupling
coefficients of various modes can significantly benefit from it.
However, AlScN thin films face the problems of crystalline
orientation, defects (AOGs) and huge residual stresses [23].
The large number of defects introduces additional energy loss
and causes a decrease in quality factor, which is more signifi-
cant at high concentrations (>20%). On the other hand, when
the Sc concentration increases, the etching difficulty increases
significantly [24], [25]. Currently, less work has been done for
Lamb wave resonant devices with Sc concentration higher than
25%, and this work breaks through the process challenges.

In this work, we report the design and experimental results
of lamb wave resonators based on 1 μm Al0.7Sc0.3N thin
films. By optimizing the sputtering process, Al0.7Sc0.3N films
with a balance of crystalline quality and residual stress were
obtained. The inductively coupled plasma (ICP) etch rate for
Al0.7Sc0.3N was effectively enhanced by increasing the RF
power with a balance of the selectivity and sidewall profile.
Simulations are performed for the Lamb wave propagation and
piezoelectric coupling characteristics of Al0.7Sc0.3N thin film
and high FOM Lamb wave resonator devices have demon-
strated below 1 GHz.

II. DESIGN AND FABRICATION
As shown in Fig. 1 (a), the Lamb wave resonator device

consists of a floating bottom metal, 1 μm Al0.7Sc0.3N thin
film and top interdigitated (IDT) electrodes. To obtain a
better crystalline quality of the AlScN thin film, 100 nm
platinum (Pt) is used for the bottom floating metal and
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Fig. 2. (a) SEM and (b) rocking curve of Al0.7Sc0.3N surface with different
N2/Ar sputtering gas ratio. (c) X-ray diffraction 2θ/θ scan Al0.7Sc0.3N and
rocking curve of Al0.7Sc0.3N (0002) with 24 sccm N2 (inset). (d) SEM
image of Al0.7Sc0.3N grown on Si and Pt surfaces.

200 nm aluminum (Al) is used for the top IDT electrodes to
reduce mass loading and resistance loss. Fig. 1 (b) shows the
corresponding electric potential and total displacement in S0
mode Lamb wave at resonance. The devices were fabricated
by a three-layer mask process [26]. ICP etching is performed
on the Al0.7Sc0.3N film to define the reflection boundary and
release window of the resonators using 4-μm-thick SiO2 as a
hard mask.

Firstly, 1 μm thick Al0.7Sc0.3N thin film was deposited
on 4-inch silicon wafers (100) using a pulsed DC magnetron
reactive sputtering in the EVATEC CLN200 MSQ with single
4-inch Al0.7Sc0.3 alloy target. As shown in Fig. 2 (a) and (b),
the ratio of N2/Ar significantly affects the crystal quality of
AlScN films. Ar as a commonly used sputtering gas and a
stress control method is not suitable in AlScN film deposition.
Larger Ar ratios add large amounts of AOGs and cause a
decrease in full width at half maximum (FWHM), which will
directly lead to a deterioration of the piezoelectric coefficient.
As shown in Fig. 2 (c), the FWHM of Al0.7Sc0.3N (0002) is
1.28◦. Nice crystal orientation was obtained by using pure
N2 as process gas. To prevent excessive stress of the film
causing a damage to the device after release, a better average
stress of 67.13 MPa and a stress range of 47.06 MPa over a
4-inch wafer were obtained (Toho FLX2320) due to a better
stress control in single alloy sputtering than co-sputtering [12].
In addition, Fig. 2 (d) shows the defect of Al0.7Sc0.3N film
grown on Si and Pt two different surfaces. Pt has been shown
to provide a good growth interface for AlN [27]. Symmetrical
properties similar to sapphire allow AlScN nucleation on Pt
in a tight arrangement. Here, less AOGs were observed on the
Pt surface, making Pt thin film as preferred bottom electrode
material for high quality Al0.7Sc0.3N deposition.

Secondly, a series of experiments were carried out to
increase etch rate in the ICP etching process (Leuven Instru-
ment HAASRODE-E200A). Fig. 3 (a) and (b) show the etch-
ing profile and cross section view by FIB of the optimized ICP
process, respectively. Here, the mechanism of etch rate drop
is found and solved. ScCl3 is a byproduct produced during
AlScN etching, and its volatility is so low that it will cover
the etched surface, making it difficult for the Cl2 reaction gas

Fig. 3. SEM image of Al0.7Sc0.3N film (a) 72◦ etching profile at RF power
of 500 W, (b) cross section view by focused ion beam (FIB) process. The
etch rate, etching profile and selectivity ratio against SiO2 as a function
of (c) Ar flow rate, and (d) RF power.

to react with the AlScN film [28]. Therefore, the method of
increasing the rate is the enhance intensity of the physical
bombardment and minimize non-volatile ScCl3 byproducts
re-deposition. Fig. 3 (c) and (d) show the etch rate, profile
and selectivity ratio versus the Ar flow rate and RF power at
BCl3/Cl2 = 30/25 sccm. The Ar gas flow has little impact on
the selectivity. When the RF power increases from 200 W to
550 W, both etch rate and selectivity increase significantly due
to increased plasma energy. The etch rate increases from about
40 nm/min to 110 nm/min, and the selectivity increases from
0.25 to about 0.46. The increase in plasma energy leads to an
increase in the physical bombardment of the etched surface
by Ar. The enhancement of physical bombardment could
strip ScCl3 from the surface and expose AlScN, indirectly
promoting the etch rate.

III. RESULT AND DISCUSSION

Since Sc doping significantly changes the material proper-
ties of AlN film, the Lamb wave propagation characteristics
based on Al0.7Sc0.3N films need to be re-evaluated. The phase
velocity with the normalized thickness (hAlScN/λ) is calculated
using the Floquet periodicity boundary condition method.
The material parameters used in the simulation are shown
in Table I [29] and [30]. The difference in phase velocity
between the free surface v0 and the metalized surface vm is
used to estimate the intrinsic coupling coefficient (K 2) [5].
Fig. 4 (a) shows the simulated phase velocities of the S0
Lamb wave mode in AlN and Al0.7Sc0.3N with the normalized
thickness. The materials of the electrodes are Pt and Al,
and their thicknesses are fixed at 0.1∗hAlScN and 0.2∗hAlScN,
respectively. The S0 mode phase velocity in Al0.7Sc0.3N film
decreases from around 8703 m/s to 7193 m/s in pure AlN
film. The simulation results are well fitted to the measurement
by taking the mechanical load into account. Fig. 4 (b) shows
the influence of different metals on K 2. When the normalized
thickness is below 0.1, the Al electrode can obtain the highest
coupling coefficient.
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TABLE I
MATERIAL PARAMETER OF Al0.7 Sc0.3 N

Fig. 4. (a) FEM simulated phase velocities for the S0 Lamb wave
mode with normalized thickness hAlScN/ι. (b) Simulated K2 of the S0
mode in the Al0.7Sc0.3N thin films with various metals of top electrodes.

Fig. 5. Measured admittance spectrum of the LWRs with wavelength
of (a) 12 μm and (b) 24 μm with the MBVD model parameters. (c) Mea-
sured k2

t and Q of LWR with Al0.7Sc0.3N. (d) SEM of fabricated LWR.
(e) Temperature coefficient of frequency (TCF) with Al0.7Sc0.3N.

Fig. 5 (a) and (b) show measured admittance frequency
response (Keysight PNA-L N5234B) of two fabricated LWRs
with the wavelength of 12 μm and 24 μm, respectively.
Modified Butterworth-Van Dyke (MBVD) model fitting as
well as extracted parameters are displayed in the figures.
The resonant frequencies are 583.3 MHz and 298.5 MHz,
while k2

t are 7.19% and 7.74%, respectively. The measurement
results fit well with FEA simulation. Thanks to the opti-
mized Al0.7Sc0.3N film crystalline quality and stress control,
the resonator achieves a loaded Q of 1119.2 and low Rm
of 16.6 �, which leads to a high FOM of approximately
86.6 for 24 μm LWR.

The corresponding measurement results of resonance fre-
quency, Sc doping concentration, k2

t , Q and FOM (k2
t · Q)

TABLE II
COMPARISON WITH PREVIOUS WORKS

are summarized in Table II with comparison to other works.
FBAR is easier to obtain high FOM due to a larger d33,
however, it is challenging to achieve multiple bands monolith-
ically [22], [29]. The LCAT mode utilizes both d33 and d31
piezoelectric coefficients, and an electromechanical coupling
coefficient of more than 10% has been obtained at 12%
Sc concentration [9]. LCAT resonators need to pattern the
bottom electrode, as shown in Fig. 2 (d), the metal and silicon
boundaries could create a large number of defects, which
requires significant process control and optimization. When
the Sc concentration is more than 20%, it can be observed that
the AlScN film based devices have difficulty in achieving high
quality factors comparable to pure AlN film, due to intrinsic
large ionic vibrations, stress control of AlScN film as well
as the device design. Recently, a comparable FOM of 92 has
been achieved at Al0.68Sc0.32N film, however, the operating
frequency is relatively low since the viscosity of the materials
dominates while resonating at high frequencies [20]. The
LWR with a floating bottom electrode in this work has the
advantage of frequency scaling and tunability as well as easier
process integration. By utilizing the array structure and further
optimized anchor design, the device can be easily scaled to
higher frequencies with 50 � impedance matching [31].

In order to investigate the effect of Sc doping on the
temperature characteristics of the resonators, temperature mea-
surements in the range of 25 ◦C to 120 ◦C were performed.
Fig. 5 (e) shows the measured resonance shift as a function
of the temperature for 24 μm Al0.7Sc0.3N resonator device.
The extracted TCF is −55.92 ppm/◦C, which is larger than
pure AlN. This attributes to the increased thermal expansion
coefficients and reduced elasticity modulus of Al0.7Sc0.3N
film with high Sc doping. Further temperature compensation
technique could be implemented to improve the device TCF.

IV. CONCLUSION

In this work, we have successfully demonstrated high qual-
ity Al0.7Sc0.3N thin film as well as large FOM Lamb wave
resonators. By utilizing pure nitrogen, nice crystalline quality
and clean surface has been obtained. The k2

t of fabricated
Lamb wave resonators has been significantly improved to
7.74% with a loaded Q of 1119. Such a high FOM of over
86.6, high quality factor and low Rm in AlScN film based
Lamb wave resonators provide wide potential applications in
RF communication and sensors by adopting Scandium doping
in AlN film, at least at frequencies below 1 GHz.
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